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using properties of Jacobi’s triple product identities. Findings are new and not available in the literature of special
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.  INTRODUCTION

For |g| < 1,
(@; )00 = [ [ (1 = ag™) (1.1)
(@:9)oo = [ (1 = ag™™) (1.2)
(a1, az,a3, .., ak; @)oo = (015 @)oo (@25 @)oo (35 @)oo+ (AR5 @)oo (1.3)

Ramanujan [2, p.1(1.2)] has defined general theta function, as
flab) =" a™ ™5 Jab] < 1, (1.4)

Jacobi’s triple product identity [3,p.35] is given, as
fla,b) = (—a;ab) oo (—b; ab) oo (ab; ab) (1.5)

Special cases of Jacobi’s triple products identity are given, as

$q)=fla.a)= Y ¢ = (6% ) (1.6)
s N e (6%
(9) = f(g.4") = nzzoq = e (1.7)

3. B.C. Berndt; Ramanugjan’s notebook Part III, Springer-Verlag, New York, 1991.

2. B.C. Berndt; What is a g-series?, preprint.
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o0

Ja) = fla,~) = 3 (1" = (¢:0)= (1.8)

n=—oo

Equation (1.8) is known as Euler’s pentagonal number theorem. Euler’s another well
known identity is as

(¢:6°) = (=4 @)oc (1.9)

Throughout this paper we use the following representations

(4% 000 (0" 0o (05000 - -+ (€550 0e = (¢, 4"+ 055 ") oo (1.10)
(0% 0")0o(0" 0o (05000 -+ (655000 = (¢, ¢+ 4" ") oo (1.11)
(=¢" ") oo (=0 0" 0 (050" o - (650" 00 = (=%, =", 4" ¢"1 0" )0 (1.12)

Computation of ¢-product identities:
Now we can have following g-products identities, as

(%6 = [ (1 = ™)
n=0
_ ﬁ( 2(4n +2 « H 4n+1)+2 >< H 2(4n+2) +2 « H 2(4n+3) +2)
n=0

o0

H 8n+2 X H 8n+4 « H 8n+6 X H 8n+8

or,
(6% D)oo = (6% 6% o0 (0" 6*) 0 (0% ¢*) e (65 %) o

= (¢*,¢",¢° ¢% ¢*)0 (1.13)
also we can compute
(7% %) = (€% 0" oo (q" 0" s (1.14)
(0% e = [J(1 = ¢*)
n=0

o0

— H(l _ q4(3n)+4) % H(l _A(3n+1) +4 ) x H 4(3n+2 +4)

o0
H 12n+4 >< H 12n+8 >< H 12n+12

or,

(0" 0" = (0" 4") o0 (d®; ") e (0" ¢"%) oo

= (4" ¢%,¢"% q") 19
<q4;q12>oO _ H(l _ q12n+4> _ H(l 2(5n) +4 ) X H 2(5n+1) +4)><
n=0 n=0

« H 2(5n+2) +4 >< H 2(5n+3) +4 >< H 2(5n+4) +4)
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o0

H 60n+4 >< H 60n+16 X H 60n+28
% H 60n+40 X H 60n+52

or,

(C]4; qlz)oo = (q43 QGO)OO(qu; qﬁo)w(q%? QGO)OO(Q4O§ QGO)OO(Q52§ QGO)OO

= (¢*,4"°,¢**,¢", ¢"*; ¢ (1.16)

Similarly we can compute following as
(0°:07)00 = (6%0")o0 (0" 4")o0 (075 4" ) oo

=(¢",4", ¢ ¢")w (1.17)

(0% %) oo = (0% ®) oo (0% ) o (€% ¢*H oo (%5 ¢*Y) o
= (¢4, ¢", ¢* ¢ (1.18)

(616;6]12)00 — (q6; qGO)Oo(qléS; qGO)OO(qSO;q60)oo(q42;q60)oo(q54; q60>oo

= (4% 4", 4%, 4", ¢ ¢*) (1.19)

The outline of this paper is as follows. In sections 2, some results on continued fraction
[5-8], and also some well known results recorded by Ramanujan [9], are listed, those
are useful to the rest of the paper. In section 3, we established seven new results by
generalizing Rmanujan’s identities in terms of ¢g-products and continued fractions, using
the properties Jacobi’s triple product identities. Findings are new and not available in the
literature of special functions. In section 4, we provide the proofs for newly established
results.

[1. PRELIMINARIES

In [9, p. 224], Ramanujan recorded following identities

Entry(i):
() (@) - (=¢) (=¢") — ¢ (2.1)
(@) (@)= (=q) (=¢%) '
Entry(ii):
(@) (@)= (=¢) (=) _ (2.2)
(@) (@)= (=a) (=¢%) '
Entry (iii):

@)~ ()
@ = (=g =) ¢ (23)

In [9, p. 230], Ramanujan recorded following identities

Entry(vii):

(@) (@)= (=) (=¢") =2qf(",a")f(q",q®) +2¢"d(¢°) (¢"*) (2.4)
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In [9, p. 299], Ramanujan recorded following identities

Entry(ii):
@)d(a*) — d(=a)d(—¢"") = 44 f (—4°) f(—=a"*) + 44" (¢*) (™)
Entry(iii):
Aa)o(q”) — d(—a)o(—¢”) = 4af (") f(=¢'") + 44" (¢*) (¢")
Entry(iv):
o o(@°)0(q") — ¢(=a")o(—a") = 4¢* (¢") (¢") —2¢°f(=4*) F(—¢")
(:‘ In [7], following continued fractional identities is given
é 2.2\ (.. _ (4% ¢*) oo _ 1
1+ g(1—q)
1- ¢
2 2
14 e 4 )
1— q
L A=)
L+:

associated with Ramanujan’s academic career [§],

(2.5)

(2.6)

(2.7)

(2.8)

Following Rogers-Ramanujan continued fraction is one of the most celebrated identities

(2.9)

(2.10)

(2.11)

g
>
=
i ()65 ) q
S Clg) = 5 4. 45 =1+ 2
> (4 4°)o0 (4" ¢°)oo q
—é 1+ q—5
1+ -2
e 1+:
é In [5, equation (1.6)], the famous Rogers-Ramanujan continued fraction identity is given
- (40" (0% %) _ 1
: (6% °)oo(@® )0 1+ 7
f 1 + q—3
B L+ : 1
E 142
3, 1+:
£ In [6, equation (4.21)], following Ramanujan continued fraction identity is given
E (% ") _ 1
1+ d qq5

| L+ 7+

1+ e

1+ 1, 6
R —
1+
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I11.  MAIN RESULTS

In this section, we established seven new results by using

(.) and ¢(.) functions in

Ramanujan identities [9], or in more general language we can say that by using the

properties of Jacobi’s triple product identity, as

(.) and ¢(.) functions are special cases

of it, and further applying the properties of continued fraction identities. These results
are new, and not recorded in the literature of special functions

6 [ (=050 (=0 0")oe — (070" 00”3 ¢"%) o
(=4 %) 0o (—G%:; ¢"%) oo — (45 ¢%) 0 (¢53; ¢1%%) o

X

(=4, ¢ %) oo (—4%, 4% ¢

X X
(4% 0%) oo (=475 M) 0o (—¢%; ¢*®) 0o (¢26; ¢1%6) o
1 1
X = X 5 (3.1)
1— 1—
7 7 9 9
q"(1—q") (1 —q’°)
1 + q21 1 + q27
1— 1
14 14 18 18
g1 —q") 71 —q")
1- 21q 21 1 27q 27
1— 1—
i (1—¢"") 144 (1—¢°")
14 14
£ = [CT0)0e(20 00 = (07500 4%)c |
(=4 6%)00(—0%%; 4" 00 — (45 ¢*) 0 (4°%5 ¢*10) o
5 (=44 ) oo (=0, 475 ") o y
(q2’ q2)oo(_q5a qlo)oo(_qll; Q22)00<C]110; qlll))oo
1 1
X = X i (3.2)
1— 1—
5 5 11 11
(1 —q) ' (1—q")
1 _'_ q15 1 + q33
1— 1—
10 10 22 22
¢ (1 —q") (1 —q*)
1 + 25 1 + 55
1— 15q 15 1 33q 33
1— 1—
i (1-4") 144 (1—¢%)
1+ 14
7= [CT )20 0 )0 = (055000075 67)
(—4:0%) 0o (=05 0™) 0 — (¢ 6%) 0 (3% 4™ ) o
« (_Q7 q; q2)oo(_q39 q39’ q78)oo %
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y 1 1
1_ 3 1_ q13
31_3 131_ 13
|+ q°( g) - q"( :g)
11— d 1— q
61_6 261_ 26
4 q°( 1<15) L+ a*( 6%)
1 g 1 g
91_9 391_ 39
1Jrqr( q”) 1+Q( q*)
14 14

(¢ q
2q(q12;q12)00 |:(_q2’ _ql(); q12)oo(_q447q88; q132)oo+q14<_q6;q12)2

264. 264)
S (q132; q264)00:|

N {(—q; 7*)oo(=0"5 4% o0 — (436" (q" q22)oo:| y
(=4 ¢*) o (=05 ¢%) o
1 1
X - 7 X 1 Y
1+ Q(l - Q) q“(l — qn)
q3 L+ q33
b q2(1 - q2) 1 - 22 22
1+ q”(1—q%)
1 i b ¢
- 3 3 1—
(1 —¢q°%) B3(1 _ g%
1+ T 141 (1—q%)
: 14"
(0% 600”5 6™ oo | (=43 )2 (=" "2 — (6 °) 2 (675 6°%
= 4q(¢% ¢%) oo (4"% ¢"%) o + 44" X
1 1
X 2 ez
1— 1 —
2 2 54 54
(1 —q°) (1 —q*)
1+ 5 1+ 7152
1-— 1—
At I b )
10 270
1 - 6q 6 1 - 163 162
1+q(l—q> L4 (1—¢"?)
14: 14
(% 6o (@™ 4o | (=05 )2 (=07 4) 2 — (4:67)2 (6% 47)2
=49(¢"; ¢") o (" ") oo + 4¢” x
1 1
X 3 X q70
1-— 1 —
2 2 70 70
(1 —q°%) q"(1—q")
1+ qG 1+ q210
1— 1 —
e a(l=dY T )
10 350
1—- Gq 6 1— 210q 210
1+Q(1—Q) o (1—¢*")
1+: 1+4:
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(3.5)

(3.6)

Notes



(0% 4")0o (@ 0" oo | (=% ¢ )2 (=75 4" 2 = (6 ¢ )2 (7 ¢ D%

_ _2q3(q2;q2>oo(q70;q70)oo —i—4q3><

1 1
X 10 X 14 (37)
1— 10q 10 1- 14q 14
1-— 1 -
” q"( 3%) L+ q( 4612)
1— q 1— d
20(] _ 20 B(] _ 28
Notes 1414 ( 5%) 144 ( 7%)
q q
1-— 1-—
30(1 _ 430 20 _ A2
144 (1—4¢") L4 4 (1—-4¢")
14+: 14:

IV.  PROOFS FOR MAIN RESULTS (3.1) TO (3.7)

Proof of (3.1): In (1.7), put ¢ = —q,q¢", —q", ¢°, —¢°, ¢°3, —¢°®3 respectively, we get

(@) o (@hd s o (60w
(—q) = g ) (¢") a0 (=q") ) (3.1.1)
oy _ (@%¢%) g0 (6%0%)x
(¢) = P b(=q") = [ (3.1.2)
(%) = (4% 4" B(—g%) = (4" 4"*) o0 (3.13)

((]63; q126)oO ’ (_q63; q126)oo

Now, substituting the values from (3.1.1) to (3.1.3), and using (1.7) into (2.1), after sim-
plifications by applying the properties of g-product identities and further using continued
fraction (2.8), we get desired result (3.1).

Proofs of (3.2) and (3.3): On similar lines of proof for (3.1), we can easily obtain
proofs for (3.2) and (3.3).

Proof of (3.4): In (1.7), put ¢ = —q, ¢'*, —¢'!, ¢'32, respectively, we get

o - G - i G
(3.4.1)
again by putting ¢ = ¢° in (1.6), we get
3(a°) = (4% 4")5% (4" 4"%)w (3.4.2)
also by putting a = ¢, b = ¢'° and a = ¢*, b = ¢® respectively in (1.5), we get
F(@ 0 = (a2 D)oo (—0'% D)o (0% D) (3.4.3)
F(a",6%) = (=0" 0o (=6™ 4")oo (0" ¢ (3.4.4)
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Now, substituting the values from (3.4.1) to (3.4.4), and using (1.7) into (2.4), after sim-
plifications by applying the properties of ¢g-product identities and further using continued
fraction (2.8), we get desired result (3.4).

Proof of (3.5): In (1.6), put ¢ = —q, ¢*", —¢°7, respectively, we get

(=) = (4 6°)% (0% %) (3.5.1)
and
(¢”) = (=" "2 (" 6™ ) oo, 9(—0"T) = (€71 "2 (6™ 6™ (3.5.2)

by substituting ¢ = ¢°, ¢”* respectively in (1.7), we get

4. 4 108. 108
N T say _ (@70
=TS I = o 3.5.3
) (4% q*)oo ve) (6 %) (3:5:3)
again by substituting ¢ = ¢%, ¢'® respectively in (1.8), we get
F(=0°) = (6% ")oss F(—=4"*) = (¢"%¢"*)cc (3.5.4)

Now, substituting the values from (3.5.1) to (3.5.4), and using (1.6) into (2.5), after sim-
plifications by applying the properties of g-product identities and further using continued
fraction (2.8), we get desired result (3.5).

Proofs of (3.6) and (3.7): On similar lines of proof for (3.5), we can easily obtain
proofs for (3.6) and (3.7).
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